3 research outputs found

    Privacy-preserving clinical decision support system using gaussian kernel-based classification

    Get PDF
    A clinical decision support system forms a critical capability to link health observations with health knowledge to influence choices by clinicians for improved healthcare. Recent trends toward remote outsourcing can be exploited to provide efficient and accurate clinical decision support in healthcare. In this scenario, clinicians can use the health knowledge located in remote servers via the Internet to diagnose their patients. However, the fact that these servers are third party and therefore potentially not fully trusted raises possible privacy concerns. In this paper, we propose a novel privacy-preserving protocol for a clinical decision support system where the patients' data always remain in an encrypted form during the diagnosis process. Hence, the server involved in the diagnosis process is not able to learn any extra knowledge about the patient's data and results. Our experimental results on popular medical datasets from UCI-database demonstrate that the accuracy of the proposed protocol is up to 97.21% and the privacy of patient data is not compromised

    Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud

    Get PDF
    Emerging cloud computing infrastructure replaces traditional outsourcing techniques and provides flexible services to clients at different locations via Internet. This leads to the requirement for data classification to be performed by potentially untrusted servers in the cloud. Within this context, classifier built by the server can be utilized by clients in order to classify their own data samples over the cloud. In this paper, we study a privacy-preserving (PP) data classification technique where the server is unable to learn any knowledge about clients' input data samples while the server side classifier is also kept secret from the clients during the classification process. More specifically, to the best of our knowledge, we propose the first known client-server data classification protocol using support vector machine. The proposed protocol performs PP classification for both two-class and multi-class problems. The protocol exploits properties of Pailler homomorphic encryption and secure two-party computation. At the core of our protocol lies an efficient, novel protocol for securely obtaining the sign of Pailler encrypted numbers

    User collusion avoidance scheme for privacy-preserving decentralized key-policy attribute-based encryption

    Get PDF
    Decentralized attribute-based encryption (ABE) is a variant of multi-authority based ABE whereby any attribute authority (AA) can independently join and leave the system without collaborating with the existing AAs. In this paper, we propose a user collusion avoidance scheme which preserves the user's privacy when they interact with multiple authorities to obtain decryption credentials. The proposed scheme mitigates the well-known user collusion security vulnerability found in previous schemes. We show that our scheme relies on the standard complexity assumption (decisional bilienar Deffie-Hellman assumption). This is contrast to previous schemes which relies on non-standard assumption (q-decisional Diffie-Hellman inversion)
    corecore